back start next


[start] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [ 48 ] [49] [50] [51]


48

Bibliography

Adcock. R. J. 1878. A problem in least squares. Analyst 53.

Aikens, C. H. 1985. Facility location models for distribution planning. European Journal of Operational Research 22:263-279.

Armour, G. C, and E. S. Buffa. 1963. A heuristic algorithm and simulation approach to relative location of facilities. Management Science 9:294-309.

Balas, E. 1983. A class of location, distribution and scheduling problems: Modeling and solution methods. In Proceedings of the Chinese-U.S. symposium on systems analysis, eds. P. Gray and L. Yuanzhang. New York: Wiley.

Balinski, M. L. 1965. Integer programming: Methods, uses, computation. Management Science 12:253-313.

Balinski, M. L., and W. J. Baumol. 1968. The dual in nonlinear programming and its economic interpretation. Review of Economic Studies 35:237-256.

Bazaraa, M. S., and A. N. Elshafei. 1979. An exact branch and bound procedure for the quadratic assignment problem. Naval Research Logistics Quarterly 26:109-121.

Bazaraa, M. S., and O. PLirca. 1983. A branch-and-bound-based heuristic for solving the quadratic assignment problem. Naval Research Logistics Quarterly 30:287-304.

Bazaraa, M. S., and H. D. Sherali. 1980. Benders partitioning scheme applied to a new formulation of the quadratic assignment problem. Naval Research Logistics Quarterly 25:29-41.

Baumol, W. J., and P. Wolfe. 1958. A warehouse-location problem. Operations Research 6:252-263.

Beckenbach, E. F., and R. Bellman. 1965. Inequalities Berlin: Springer-Verlag.

Belardo, S., J. Harrald, W. A. Wallace, and J. A. Ward. 1984. A partial covering approach to siting response resources for major maritime oil spills. Management Science 30:1184-1196.



Bellman, R. 1965. An application of dynamic programming to location-allocation

problems. SIAM Review 7:126-128. Bilde, O., and J. Krarup. 1977. Sharp lower bounds and efficient algorithms for

the simple plant location problem. Annals of Discrete Mathematics 1:79-97. Bindschedler, A. E., and J. M. Moore. 1961. Optimal location of new machines

in existing plant layouts. Ttie Journal of Industrial Engineering 12:41-48. Bos, H. D. 1965. Spatial dispersion of economic activity. Rotterdam: University

Press.

Brady, S. D., and R. E. Rosenthal. 1980. Interactive computer graphical solutions of constrained minimax location problems. AIIE Transactions 12:241-248.

Brady, S. D., R. E. Rosenthal, and D. Young. 1983. Interactive graphical minimax location of multiple facilities with general constraints. HE Transactions 15:242-254.

Burkard, R. E. 1984. Quadratic assignment problems. European Journal of Operational Researcti 15:283-289.

Burkard, R. E., and K. H. Stratmann. 1978. Numerical investigations on the quadratic assignment problem. Naval Research Logistics Quarterly 25:129-148.

Burness, R. C, and J. A. White. 1976. The traveling salesman location problem. Transportation Science 10:348-360.

Cabot, A. v., R. L. Francis, and M. A. Stary. 1970. A network flow solution to a rectilinear distance facility location problem. AIIE Transactions 2:132-141.

Calamai, P. H., and A. R. Conn. 1987. A projected Newton method for f„ norm location problems. Matfiematical Programming 38:75-109.

Chalmet, L. G., R. L. Francis, and A. Kolen. 1981. Finding efficient solutions for rectilinear distance location problems efficiently. European Journal of Operational Research 6:117-124.

Charalambous, C. 1981. An iterative algorithm for the multifacility minimax location problem with Euclidean distances. Naval Research Logistics Quarterly 28:325-337.

-. 1985. Acceleration of the HAP approach for the multifacility location

problem. Naval Research Logistics Quarterly 32:373-389. Chatelon, J. A., D. W. Hearn, and T. J. Lowe. 1978. A subgradient algorithm for

certain minimax and minisum problems. Mathematical Programming 15:130-

145.

Chen, R., and G. Y. Handler. 1987. Relaxation method for the solution of the minimax location-allocation problem in Euclidean space. Naval Research Logistics 34:775-788.

Christofides, N., and S. Eilon. 1969. Expected distances in distribution problems.

Operational Research Quarterly 20:437-443. Church, R. L., and C. S. ReVelle. 1974. The maximal covering location problem.

Papers of the Regional Science Association 32:101-118. -. 1976. Theoretical and computational links between the p-median, location

set covering and the maximal covering location problem. Geographical Analysis

8:406-415.

Converse, A. 0.1972. Optimum number and location of treatment plants. Journal

of Water Pollution Control Federation 44:1629-1636. Cooper, L. 1963. Location-allocation problems. Operations Research 11:331-343. -. 1964. Heuristic methods for location-allocation problems. SI AM Review

6:37-53.

-. 1968. An extension of the generalized Weber problem. Journal of Regional Science 8:181-198.

-. 1972. The transportation-location problem. Operations Research 20:94-

108.

Comuejols, G., M. L. Fisher, and G. L. Nemhauser. 1977. Location of bank accounts to optimize float. Management Science 23:789-810.

Dahlquist, G., and A. BjOrck. 1974. Numerical methods. Translated by N. Anderson. Englewood Cliffs, NJ: Prentice-Hall.

Daskin, M. S., and E. H. Stern. 1981. A hierarchical objective set covering model for emergency medical service vehicle deployment. Transportation Science 15:137-152.

Davis, S. G., G. B. eindorfe , G. A. Kochenberger, E. T. Reutzel, and E.W.Brown. 1986. Strategic planning for bank operations with multiple check-processing locations. Interfaces 16/6:1-12.

Dearing, P. M., and R. L. Francis. 1974. A network flow solution to a multifacility minimax location problem involving rectUinear distances. Transportation Science 8 26- .

Dohrn, P. J., and C. D. T. Watson-Gandy. 1973. Depot location with van sales-

men-A practical approach. OMEGA 1:321-329. Domschke, W., and A. Drexl. 1985. Location and Layout Planning: An International Bibliography Vol. 238. In: Lecture Notes in Economics and Mathematical Systems. Berlin: Springer-Verlag. Donnay, J. D. H. 1945. Spherical trigonometry. New York: Interscience. Drezner, Z. 1984. The planar two-center and two-median problems. Transpor-

tatibn Science 18:351-361. Drezner, Z., and G. O. Wesolowsky. 1978a. Facility location on a sphere. Journal of the Operational Research Society 29:997-1004.

-. 1978b. A new method for the multifacility minimax location problem.

Journal of the Operational Research Society 29:1095-1101.

-. l980a. Single facility f„-distance minimax location. SIAM Journal on

Algebraic and Discrete Methods 1:315-321.

-. 1980b. Optimal location of a faciUty relative to area demands. Naval

Research Logistics Quarterly 27:199-206.

-. 1980c. A maximin location problem with maximum distance constraints.

AIIE Transactions 12:249-252.

-. 1981. Optimum location probabilities in the distance Weber problem.

Transportation Science 12:85-97.

Dutton, R., G. Hinman, and C. B. Millham. 1974. The optimal location of nuclear-power facilities in the Pacific Northwest. Operations Research 22:478-487.



Economides, S., and E. Fok. 1984. Warehouse relocation or modernization: Modeling the managerial dilemma. Interfaces 14/3:62-67.

Efroymson, M. A., and T. L. Ray. 1966. A branch-and-bound algorithm for plant location. Operations Researcli 14:361-368.

Eilon, S., C. D. T. Watson-Gandy, and N. Christofides. 1971. Distribution management. New York: Hafner.

Elshafei, A. N. 1977. Hospital layout as a quadratic assignment problem. Operational Research Quarterly 28:167-179.

El-Shaieb, A. M. 1973. A new algorithm for locating sources among destinations. Management Science 20:221-231.

Elzinga, J., and D. W. Hearn. 1972a. The minimum covering sphere problem. Management Science 19:96-104.

-. 1972b. Geometrical solutions for some minimax location problems.

Transportation Science 4:379-394.

-. 1973. A note on a minimax location problem. Transportation Science

7:100-103.

-. 1983. On stopping rules for facilities location algorithms. HE Transactions

15:81-83.

Elzinga, J., D. W. Hearn, and W. D. Randolph. 1976. Minimax multifacility

location with Euclidean distances. Transportation Science 10:321-336. Erlenkotter, D. 1977. Facility location with price-sensitive demands: Private, public, and quasi-public. Management Science 24:378-386. -. 1978. A dual-based procedure for uncapacitated facility location. Operations Research 26:992-1009.

1981. A comparative study of approaches to dynamic location problems.

European Journal of Operational Research 6:133-143. Eyster, J. W., J. A. White, and W. W. Wierwille. 1973. On solving multifacility location problems using a hyperboloid approximation procedure. AIIE Transactions 5:1-6.

Fitzsimmons, J. A., and L. A. Allen. 1983. A warehouse location model helps

Texas comptroller select out-of-state audit offices. Interfaces 13/5:40-46. Francis, R. L. 1963. A note on the optimum location of new machines in existing plant layouts. The Journal of Industrial Engineering 14:57-59.

-. 1964. On the location of multiple new facilities with respect to existing

facilities. The Journal of Industrial Engineering 15:106-107.

-. 1967. Some aspects of a minimax location problem. Operations Research

15:1163-1168.

-. 1972. A geometrical solution procedure for a rectilinear distance minimax

location problem. AIIE Transactions 4:328-332. Francis, R. L., and A. V. Cabot. 1972. Properties of a multifacility location problem involving Euclidean distances. Naval Research Logistics Quarterly 19:335-353.

Francis, R. L., and J. M. Goldstein. 1974. Location theory: A selective bibliography. Operations Research 22:400-410.

Francis, R. L., L. F. McGinnis, and J. A. White. 1983. Locational analysis. European Journal of Operational Research 12:220-252. Francis, R. L., and J. A. White. 1974. Facility layout and location: An analytical

approach. Englewood Cliffs, NJ: Prentice-Hall. Gavett, J. W., and N. V. Plyter. 1966. The optimal assignment of facilities to

locations by branch and bound. Operations Research 14:210-232. Gelb, B. D., and B. M. Khumawala. 1984. Reconfiguration of an insurance companys sales regions. Interfaces 14/6:87-94. Gelders, L. F., L. M. Pintelon, and L. N. Van Wassenhove. 1987. A location-allocation problem in a large Belgian brewery. European Journal of Operational Research 28:196-206. Geoffrion, A. M. 1971. Duality in nonlinear programming: A simplified applications-oriented development. SIAM Review 13:1-37.

-. 1975. A guide to computer-assisted methods for distribution systems

planning. Sloan Management Review 16/2:17-41.

-. 1976a. Customer aggregation in distribution modeling. Western Man-

agement Science Institute Working Paper No. 259, UCLA, October.

-. 1976b. Better distribution planning with computer models. Harvard Busi-

ness Review 54:92-99.

-. 1976c. The purpose of mathematical programming is insight, not num-

bers. Interfaces 7/1:81-92.

-. 1977a. Objective function approximations in mathematical programming.

Mathematical Programming 13:23-37.

-. 1977b. A priori error bounds for procurement commodity aggregation in

logistics planning models. Naval Research Logistics Quarterly 24:201-212. Geoffrion, A. M., and G. W. Graves. 1974. Multicommodity distribution design

by Benders decomposition. Management Science 20:822-844. Geoffrion, A. M., G. W. Graves, and S. Lee. 1978. Strategic distribution system

plgmning: A status report. In Studies in operations management, ed. A.Hax.

New York: North Holland/American Elsevier.

-. 1983. A management support system for distribution planning. INFOR

20:287-314.

Geoffrion, A. M., and R. F. Powers. 1980. Facility location analysis is just the

beginning (if you do it right). Interfaces 10/2:22-30.

-. 1981. Management support systems. The Wharton Magazine 5/3:26-35.

Geoffrion, A. M., and T. J. Van Roy. 1979. Caution: Common sense planning

methods can be hazardous to your corporate health. Sloan Management Review

20/4:31-42.

Gilmore, P. C. 1962. Optimal and suboptimal algorithms for the quadratic assignment problem. SIAM Journal on Applied Mathematics 10:305-313.

Ginsburgh, v., and P. Hansen. 1974. Procedures for the reduction of errors in road network data. Operational Research Quarterly 25:321-322.

Graves, G. W., and A. B. Whinston. 1970. An algorithm for the quadratic assignment problem. Management Science 16:453-471.



[start] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [ 48 ] [49] [50] [51]